

Fing

Fing Limited
1st Floor Minerva House
Simmonscourt Road
Dublin 4, Ireland

fing.com/business

Fing Kit for Device Recognition

Fing Desktop & Embedded SDK - Developers Guide

Fing Kit for Device Recognition
Last Update: 21 March 2021
Document Version: 1.4.2

PA
GE
*

FingKit – Find and Recognize devices, on any network

Table of Contents

Table of Contents 1

1. FingKit Desktop/Embedded library 3

Overview 3

Available platforms 3

Integration within a Linux app 3

Integration within a Windows app 4

Integration within a Mac OSx app 4

2. Package 5

Structure 5

Installation 5

Software License 5

3. API Specification 7

Asynchronous design 7

Error Handling 8

API Suite 8

License Key validation 8

Get Network Info 10

Configure FingKit 11

Get FingKit library version 12

Discovery lifecycle - Start 12

Discovery lifecycle - Force Refresh 13

Discovery lifecycle - Stop 13

3. Discovery data structure 14

Progress dataset of the discovery 14

Discovery dataset of the network 14

Network dataset 15

Internet Service Provider dataset 15

Network Node base dataset 15

Network node detail dataset for NetBIOS 16

Network node detail dataset for Bonjour 16

Network node detail dataset for UPnP 16

Network node detail dataset for Dhcp 16

PA
GE
*

FingKit – Find and Recognize devices, on any network

Network node detail dataset for Dhcpv6 16

Network node detail dataset for Http 16

Network node detail dataset for Snmp 16

Network node detail dataset for NetBIOS 16

Network node detail dataset for Bonjour 17

Network node detail dataset for UPnP 17

Network node detail dataset for Http User Agent 17

Network node detail dataset for SNMP 18

Network node detail dataset for DHCP 18

Network node detail dataset for DHCP6 18

Full Samples 19

Appendix 1 - Fing Categorization - Groups and Types 23

PA
GE
*

FingKit – Find and Recognize devices, on any network

1. FingKit Desktop/Embedded library

Overview	

Fing has developed over the last few years a number of AI-driven algorithms to recognise
connected devices by brand, make model and OS based on analysing network protocols along
with top level tools for network scanning. Now the technology is available to be integrated to
3rd parties’ application.

This document provides the guidelines for the Fing Software Development Kit (the Fing Kit
from this point forward).

FingKit is available as ANSI C library and support the most common Operating System in the
Desktop and Embedded space. The software library requires just an Internet connection and a
Fing License Key.

To ensure decoupling of runtime and dynamic dependencies, FingKit Embedded runs as a
separate command (or service, or daemon) in the embedding environment, thus isolating the
execution of the command from the caller’s environment. The process is configured through a
configuration API, and generates output to a destination callback.

Available	platforms	

FingKit library is a cross-platform solution, supporting many of the most common platforms
used in embedded and desktop devices. As the table groups the supported platforms in two
categories: Kernel and Operating System. Every combination of these option is supported.

Kernel Architecture Operating System Package Format

Linux Intel i686, x86_64, arm, arm64,
armhf, arm64hf

Other Linux flavors

.tar.gz

Microsoft
Windows

x86 (compatible with 64-bit
processors)

Microsoft Windows .zip

Darwin x86_64 Apple macOS .zip

Integration	within	a	Linux	app	

The Kit is available as an ANSI C library standard, suitable to be used with the Gnu Compiler
Collection and the native Linux Operating System.

The FingKit library itself shall be included your application project as well. To import and use
the functionalities of the FingKit modules, you shall simply import the module main header
and the library.

#include <fingkit.h>

PA
GE
*

FingKit – Find and Recognize devices, on any network

The FingKit functionalities are accessed via shared library (so) provide, list of architecture available and
GCC version used to build FingKit Library as follows:

Architecture GCC version

x86_64 5.4.0
armhf 5.4.0

Integration	within	a	Windows	app	

The Kit is available as an ANSI C library standard, suitable to be used with the Microsoft .NET
Framework and the native Microsoft Windows.

The FingKit library itself shall be included your application project as well. To import and use
the functionalities of the FingKit modules, you shall simply import the module main header
and the library.

#include <fingkit.h>

The FingKit functionalities are accessed via dynamic library (DLL) provide.

Integration	within	a	Mac	OSx	app	

The Kit is available as an ANSI C library standard, suitable to be used with the Gnu Compiler
Collection and the native Darwin Operating System.

The FingKit library itself shall be included your application project as well. To import and use
the functionalities of the FingKit modules, you shall simply import the module main header
and the library.

#include <fingkit.h>

The FingKit functionalities are accessed via shared library (dylib) provide, list of architecture available
and GCC version used to build FingKit Library as follows:

Architecture GCC version

x86_64 Apple LLVM version 9.1.0 (clang-902.0.39.2)
Target: x86_64-apple-darwin17.7.0
Thread model: posix

PA
GE
*

FingKit – Find and Recognize devices, on any network

2. Package

The Fing SDK is a lightweight development kit containing a portable C Header, the libraries
and some working example to simplify users' job. The examples are available both in C as in
C++.

Structure	

.
├── example/
│ ├── bin
│ │ └── FingKitDemo.bin
│ ├── fingkitdemo
│ └── src
│ ├── FingKitDemo.c
│ └── FingKitDemoCpp.cpp
├── include/
│ └── fingkit.h
└── lib/
 ├── ...
 └── ...

The lib/ folder contains all the dependencies in different format:

● .dll for Windows
● .so for Linux / Unix / OpenWRT
● .dylib for MAC OSx

The include/ folder hold the library interface that should be included by the integrator.

The example/ folder contains the demo programs with the source code. On Windows the
executable FingKitDemo.bin is called FingKitDemo and the script fingkitdemo is called
runFingKitDemo.bat.

Installation	

Installing the Fing Kit on your application is straightforward: it’s sufficient to copy the content
of include/ and lib/ folders in the corresponding directories of the application.

The example section might not be included in the source project.

Software	Licenses	

The Fing SDK has some linked or embedded dependencies to some libraries for cross-platform
development, networking, encoding/compression and security:

• Boost – Cross-platform C++ library to provide base framework for applications.
• libPCAP / winPCAP – Low level networking.

PA
GE
*

FingKit – Find and Recognize devices, on any network

• Protocol Buffer – Google’s open-source technology open-source standard for binary
data format/protocol.

• ZLIB – ZLib Compression.
• LZ4 – LZ4 Compression (*)
• ZSTD – ZStandard Compression (*)
• openSSL – Open-source standard toolkit for the Transport Layer Security (TLS) and

Secure Sockets Layer (SSL) protocols.
• NetSNMP – SNMP library.

Below the full list of software licenses:

Library License
Boost Library Boost Software License 1.0
OpenSSL OpenSSL License / SSLEay License
NetSNMP BSD License
TCP Dump - LibPCAP BSD 3-Clause License
Protobuf BSD License
ZLIB ZLIB / LibPNG License
LZ4 BSD 3-Clause License
ZSTD BSD 3-Clause License

(*) Embedded in the source code

PA
GE
*

FingKit – Find and Recognize devices, on any network

3. API Specification

Asynchronous	design	

FingKit library operates asynchronously, to ensure your App is never blocked during each
operation. A callback block is used to deliver the result of an operation, or the error object in
case the operation could not be completed.

All callback methods are invoked in the main thread.

ANSI C

typedef void(* HandleFingEvent)(const char *result, int statusCode);

The callback block accepts the following list of parameters:

Parameter Type Description
result const char* The result coming from the FingKit. The result is usually in JSON

format, but in general it depends on the type of operation or if an
error occurred.

statusCode int Status code, in case the operation may not be completed
correctly.

If successful, the callback result string contains a JSON-formatted result and return always 0
statusCode.

Each result contains a header for message type and status code and a body with content
according to type, though an error description if it has be detected.

An example of successful and failed JSON structure:

successful
{
 "type": "<typeResult>",
 "statusCode": 0,
 "status":"OK",
 "result": { ..."<body>"... }
}

failed
{
 "type":"<typeResult>",
 "statusCode":<ErrorCode>,
 "status":"NOK",
 "result": { "error": "<error description>" }
}

PA
GE
*

FingKit – Find and Recognize devices, on any network

Error	Handling	

The callback may return one of the following error codes in the statusCode if the attempt to
validate the key failed.

Error Code Description
-101 The service replied, but could not validate the key
-103 Configuration operation failed
-104 Background Process an error occurred
-105 Network Interfaces retrieval failed
-106 Discovery operation failed or an error occurred

	
API	Suite	
	
License	Key	validation	

To enable the functionalities delivered by the FingKit, you must first obtain an API key and
validate it. The validation requires access to the Internet, and it shall be executed at every
application session in order to activate the features; a missing or failed validation disables the
features of the FingKit.

ANSI C

void validateLicenseKey(const char *licenseKey, const char *userAgentToken,
 HandleFingEvent *callback);

The method accepts the following list of parameters:

Parameter Type Description
licenseKey const char * Required.

The unique license key that enable the usage of Fing
Kit.
The key is used to identify the Kit owner, assess the
services that are enabled for a given license and to
ensure the usage of the functionalities within the
agreed terms

usageToken const char * Optional, max 512 characters.
If available, the token provided by earlier calls. Make
sure to keep and resend same token to have usage
counts counted once per MAU.

callback HandleFingEvent Required.
A callback block that is invoked when the validation
terminates.

If successful (StatusCode equal to 0), the callback contains a JSON-formatted result as
described in the following table.

PA
GE
*

FingKit – Find and Recognize devices, on any network

Key Value Example
kitLicenseId Your license key Will be the same value

passed as parameter
kitCustomerId Your unique customer identifier,

assigned on sign up. Usually, it’s your
company or App name

ACME

expiryDate The time at which the provided key
expires and a new key or new
validation shall be performed

2016/11/23 02:00:07

state The state of the license. It may be one
of:

● Ok
● Suspended
● Revoked

Ok

grantDiscovery A Boolean value indicating if the
network discovery feature is granted
by your license

true

grantEnrichment A Boolean value indicating if a Fing
Service enrichment is enabled.
Enrichment provides additional results
on top the local scan, such as device
type recognition.

true

usageToken A token assigned to the running device
for the present month

ABC123

usageCounted A Boolean value indicating if this
validation was the first validation of
the licensing period

true

If the validation could not be performed or fails, a description of the error is reported in the
result with corresponding status code. An example of the JSON result is reported below.

JSON

{
 "type":"license",
 "statusCode":0,
 "status":"OK",
 "result":{
 "kitLicenseId":"ABC123",
 "kitCustomerId":"ACME",
 "expiryDate":"2016/12/30 00:00:00",
 "state":"Ok",
 "grantDiscovery": "true",
 "grantEnrichment": "true",
 "usageToken": "ABC123",
 "usageCounted": "false"
 }
}

PA
GE
*

FingKit – Find and Recognize devices, on any network

A failure to validate the key is reported via an JSON result. Every error in the validation process disables
all functionalities.

Get	Network	Info	

The FingKit allows to conveniently retrieve network details from the Interfaces the device is
connected to. The network details may be retrieved through the following method.

ANSI C

void getNetworkInterfaces();

If successful (StatusCode equal to 0), the callback contains a JSON-formatted result as
described in the following table.

Key Value Example
name The Interface name en0
description The Interface description if available
address The base IP address of the network 192.168.0.0
netmask The netmask expressed as CIDR

notation. It represents the number of
bits that make up the subnet part, and
consequently the remaining bits
identify the host part

24

type The Interface type Ethernet
defaultGateway The default gateway of the network,

true/false if available
True

gatewayAddress The IP Address of the network
gateway, if available

192.168.0.1

dnsAddress The IP Address of the network DNS, if
available

192.168.0.1

An example of the JSON result is reported below.

JSON

{
 "type": "networkinterfaces",
 "statusCode": 0,
 "status": "OK",
 "result": {
 "networkinfos": [
 {
 "name": "en0",
 "type": "Ethernet",
 "address": "192.168.1.245",
 "netmask": "192.168.1.0\/24",
 "gatewayAddress": "192.168.1.1",
 "defaultGateway": true
 },

PA
GE
*

FingKit – Find and Recognize devices, on any network

 {
 "name": "awdl0",
 "type": "Ethernet",
 "address": "FE80:0000:0000:0000:24A7:46FF:FE54:E244",
 "netmask": "FE80:0000:0000:0000:24A7:46FF:FE54:E244\/128"
 },
 {
 "name": "utun0",
 "type": "BSD loopback encapsulation",
 "address": "FE80:0000:0000:0000:3396:4FF9:80E4:48D5",
 "netmask": "FE80:0000:0000:0000:3396:4FF9:80E4:48D5\/128"
 },
 {
 "name": "lo0",
 "type": "BSD loopback encapsulation",
 "address": "127.0.0.1",
 "netmask": "127.0.0.0\/8"
 }
],
 "dns": [
 "8.8.8.8"
]
 }
}

Configure	FingKit	

You may enable and tune the scan process through a set of options. The following scan options
may be specified through the appropriate JSON configure passed on your API key:

ANSI C

void configureFingKit(const char *config);

Option Description
networkinterface The interface name. Discovery can run on default

interface or on specific one.
Providing ‘default’ makes engine automatically
select and discover the current one to reach
internet, at each round.

discoveryinterval Discovery round interval in milliseconds
discoveryround Discovery rounds number, 0 to discover forever

until stopped.
discoverydatachunksize Discovery result may be chunked in pages with list

of devices.
discoveryhttpuseragent Flag to enable http user agent discovery
fullprotocolinfo Discovery result can contain the complete network

protocols details or only device recognition
summary.

PA
GE
*

FingKit – Find and Recognize devices, on any network

An example of the configuration JSON is reported below.

{
 "networkinterface": "en0",
 "discoveryinterval": "60000",
 "discoveryround": "0",
 "discoverydatachunksize": "100",
 "fullprotocolinfo": "false"
}

If successful (StatusCode equal to 0), the callback contains a JSON-formatted result as
described below

{
 "type":"configure",
 "statusCode":0,
 "status":"OK"
}

Get	FingKit	library	version	

To get the API version of the FingKit library is currently running

ANSI C

const char* getFingKitVersion()

	
Discovery	lifecycle	-	Start	

FingKit discovery must to be started by the API:

ANSI C

void startFingKit()

It will enable the discovery in according to configuration options. It can run continuously or
for a configured number of rounds, on default interface or on specific one, returning output
result in the configured callback, one for each scan. The output discovery format is JSON and
follows the specs described in section Discovery data structure, result may be chunked at
completion according to configured options.

JSON: Engine started

{
 "type":"engine",
 "statusCode":0,

PA
GE
*

FingKit – Find and Recognize devices, on any network

 "status":"OK",
 "result": {
 "state": "started"
 }
}

Discovery	lifecycle	-	Force	Refresh	

If you need to refresh a network discovery before the configured round interval, you can force
a refresh through the API:

ANSI C

void refreshFingKitDiscovery()

It will start a new discovery round and will return output result in the configured callback.

JSON: Engine refreshed

{
 "type": "engine",
 "statusCode": 0,
 "status": "OK",
 "result": {
 "state": "refreshed"
 }
}

Discovery	lifecycle	-	Stop	
To terminate discovery engine the API:

ANSI C

void stopFingKit()

allows you to close it gracefully; upon correct engine stop a callback is called.
An example below:

JSON: Engine terminated

{
 "type":"engine",
 "statusCode":0,
 "status":"OK",
 "result":{
 "state":"terminated"

PA
GE
*

FingKit – Find and Recognize devices, on any network

 }
 }

3. Discovery data structure

The FingKit library returns the set of results format in according to configuration. At the
moment, JSON format is supported, which allow an easy integration with any kind of hosting
app or process. You can enable the result chunking at completion and/or the full protocol
details.

Progress	dataset	of	the	discovery	

For the current discovery, FingKit will provide a JSON data structure describing the progress
status. This is the set of details returned.

Key Value Example
round The round number of the discovery “1”
state The current state discovery, may assume

the value:
- started
- discovering
- completed
- failed

“discovering”

progress The progress of the scan, in percentage
from 0 to 100

80

discoverydata Discovery dataset of the network, if the
state value is completed.

Discovery	dataset	of	the	network	

For the current network, FingKit will provide a JSON data structure describing the network
details and analysed properties. This is the set of details returned.

Key Value Example
result_state Flag discriminating if this scan has been

enriched by Fing Device Recognition
service

“enriched”

last_scan_timestamp The time of the last scan “2016/11/23 02:00:07”
time_zone The time zone of the scanning device “CEST”
nodes_count The amount of nodes found in the network “12”
nodes_up_count The amount of nodes found online in the

network.
“10”

network Network dataset
isp Service Provider dataset
page_current The current page of the complete result “1”
page_total The total page of the complete result “3”

PA
GE
*

FingKit – Find and Recognize devices, on any network

page_is_first Flag discriminating if this is first page “true”
page_is_last Flag discriminating if this I last page “false”
nodes List of Network node base dataset

Network	dataset		
This is the set of details returned to network interface monitored.

Key Value Example
address_type IPv4 or IPv6 IPv4
name The network name from the interface eth0
address The network address 192.16.0.0
mask_prefix_length The netmask length applied by the scan

engine, in bits
24

gateway_ip_address The IP address of the gateway 192.168.0.1
dns_address The IP address of the DNS 192.168.0.1

Internet	Service	Provider	dataset	
If internet connection is available, the scan reports also additional details on the ISP
connection and location. Some of these details may not be available, depending on the user’s
connection.

Key Value Example
country_city The city name Rome
address The public IP address 62.23.136.134
host_name The public host name acces.134.136.23.62.rev.coltfrance.com
latitude The latitude of the ISP point in

decimal degrees
12.4833

longitude The longitude of the ISP point in
decimal degrees

41.8999

timezone The time zone of the ISP Europe
organization The name of the organization

providing Internet Access
COLT Technology Services Group
Limited

country_code The 2-letters country code UK
country_region_code The region code LAZ
continent_code The 2-letters country code EU
country_postal_code The postal code of the address W10 5BN

Network	Node	base	dataset	

For each identified device, Fing provides a data structure describing the network details and
recognition result and also analysed network protocols properties.

Key Value Description
mac_address The MAC Address of the device that is

currently using to connect to the network
“06:5c:89:c9:e7:d1”

addresses_list The list of IP address assigned to the device
in the current network. It may be multiple if
the element is a network bridge or if it’s

“172.28.0.14”

PA
GE
*

FingKit – Find and Recognize devices, on any network

temporarily being assigned multiple
addresses

state Discriminates if the device is connected to
the network or not. Can be “UP” or “DOWN”

“UP”

best_name The best name of the device, evaluated
from the names returned from the various
protocols it replies to

“HP 2832”, “Marco’s iPhone”

best_type A single type identifying its major role. It’s
intended to be as brandless as possible. See
Appendix 1 for further details.

“Laptop”, “Mobile”, “Photo
Camera”, “Desktop”.

best_make The name of the makers/vendor of the
device. It may overlap with the
manufacturer, but it may be also different
in case the network interface (ETH, WIFI) is
different.

“Apple”, “Huawei” (but not
“Foxconn”)

best_model The human-readable name of the model “iPhone 5S”, “P9”
is_family Flag advicing if the model is a generic

family and not a specific model.
true

best_os The name of the Operating system, when
applicable

“iOS”, “Android”, “Windows”,
“macOS”.

best_osver The version of the Operating system, when
applicable

“7 Ultimate”, “10 Pro”,
“Mojave”

best_osbuild The build number of the Operating system,
when applicable

“19D88”, “30.3454”

recog_rank Rank value of the device recognition 95
host_name The DNS name of the device “mydevice.thissite.com”
mac_vendor The name of the company that is officially

manufacturing the network interface (ETH
or WIFI). Names are reviewed and
optimized to be consistent

“Samsung”, “Apple”, “Lenovo”
for major brands, but also
“Foxconn” for manufacturers
that registered their
components directly

netbios Network node detail dataset for NetBIOS
bonjour Network node detail dataset for Bonjour
upnp Network node detail dataset for UPnP	
dhcp Network node detail dataset for Dhcp	
dhcp6 Network node detail dataset for Dhcpv6
http Network node detail dataset for Http	
snmp Network node detail dataset for Snmp	

Network	node	detail	dataset	for	NetBIOS	

FingKit exports for NetBIOS the following JSON structure, contained in the “netbios” JSON key,
if the full protocol detail is configured.

Property Description Example
name The NetBIOS name is used to uniquely

identify the NetBIOS services listening on
the first IP address that is bound to an
adapter.

“MACBOOKPRO”

PA
GE
*

FingKit – Find and Recognize devices, on any network

The NetBIOS name is also known as a
NetBIOS computer name.

domain A type of Fully-qualified Domain Name. “mypc.locallan”
user An optional user name. Due to security

concerns, this is rarely available in the
standard implementation

“MARCO”

is_file_server An optional flag to detect if available file
server is running.

“1” or “0”

is_domain_controller An optional flag to detect if available
domain controller is enabled.

“1” or “0”

Network	node	detail	dataset	for	Bonjour	

FingKit exports for Bonjour the following JSON structure, contained in the “bonjour” JSON key.
If the full protocol detail is configured.

Property Description Example
name The Bonjour name the device publishes "name": "Giuseppes-

MacBook-Pro"
model The Bonjour model the device publishes "model": "MacBookPro11,4"
os The Bonjour Operating System name the

device publishes
"os": "OSX:17"

serviceinfo_list A list of bonjour additional services
published by the device

{"name": "Giuseppe\u0019s
MacBook Pro._device-
info._tcp.local.",
"addinfos": {
"model":"MacBookPro11,4",
“osxvers": "17"
 } }

Network	node	detail	dataset	for	UPnP	

FingKit exports for UPnP the following JSON structure, contained in the “upnp” JSON key.
If the full protocol detail is configured.

Property Description Example
name The UPnP name the device publishes “My Macbook”
make The UPnP Make name the device

publishes
“Samsung”

model The UPnP Model the device publishes “SCD8291221”
type_list A list of UPnP device types published by

the device
“urn:Belkin:device:controllee:1”

service_list A list of UPnP services published by the
device

“urn:Belkin:service:manufacture:1
”
“urn:Belkin:service:smartsetup:1”

	
Network	node	detail	dataset	for	Http	User	Agent	

PA
GE
*

FingKit – Find and Recognize devices, on any network

FingKit exports for Http User Agent the following JSON structure, contained in the “http” JSON
key. If the full protocol detail is configured and http user agent if available and it is enabled as
option. Please note HTTP user agent can be got only if FingKit is running on a gateway device,
like e.g. the network router.

Property Description Example
useragent The Http user agent list “Mozilla/4.0 (compatible; MSIE 7.0;

Windows NT 6.1; Trident/7.0;
SLCC2; .NET CLR 2.0.50727; .NET
CLR 3.5.30729; .NET CLR 3.0.30729;
.NET4.0C; .NET4.0E; Media Center
PC 6.0; InfoPath.3; BRI/2)”

Network	node	detail	dataset	for	SNMP	

FingKit exports for SNMP the following JSON structure, contained in the “snmp” JSON key. If
the full protocol detail is configured.

Property Description Example
sysoid The unique identifier of the device type “1.3.6.1.4.1.9.1.516”
name The SNMP name the device publishes “HP
services The SNMP list services the device

publishes

description The SNMP description of the device “Cisco IOS Software, C3750
Software (C3750-IPSERVICESK9-M),
Version 12.2(46)SE”

contact The SNMP contact point “admin@cisco.com”
location The SNMP location of device “North Corridor”

Network	node	detail	dataset	for	DHCP	

FingKit exports for DHCP the following JSON structure, contained in the “dhcp” JSON key.
If the full protocol detail is configured.

Property Description Example
name The DHCP name the device publishes “My Macbook”
vendor The DHCP vendor “Samsung”
params The DHCP params “1,33,3,6,15,28,51,58,59”

Network	node	detail	dataset	for	DHCP6	

FingKit exports for DHCPv6 the following JSON structure, contained in the “dhcp6” JSON key.
If the full protocol detail is configured.

Property Description Example
name The DHCPv6 name the device publishes “DESKTOP-TR18HAM”
vendor The DHCPv6 vendor “Samsung”
options The DHCPv6 options “1:8,1,3,39,16,6”
params The DHCPv6 option params “17,23,24,39”

PA
GE
*

FingKit – Find and Recognize devices, on any network

enterpriseid The DHCPv6 enterprise id 311

Full	Samples	
An example of the JSON discovery life cycle and result is reported below.

Discovery started

{
 "type":"discovery",
 "statusCode":0,
 "status":"OK",
 "result":{
 "round":"1",
 "state":"started",
 "progress":"0"
 }
 }

Discovery running, at 10% progress

{
 "type":"discovery",
 "statusCode":0,
 "status":"OK",
 "result":{
 "round":"1",
 "state":"discovering",
 "progress":"10"
 }
 }

Discovery completed, with paged results
FIRST PAGE

{
 "type":"discovery",
 "statusCode":0,
 "status":"OK",
 "result":{
 "round":"1",
 "state":"completed",
 "progress":100,
 "discoverydata":{
 "result_state":"enriched",
 "last_scan_timestamp":"2018-10-24 10:11:48",
 "time_zone":"CEST",
 "nodes_count":"66",
 "nodes_up_count":"66",
 "network":{
 "address_type":"IPv4",

PA
GE
*

FingKit – Find and Recognize devices, on any network

 "name":"en0",
 "address":"192.168.12.0\/22",
 "mask_prefix_length":"22",
 "gateway_ip_address":"192.168.12.1",
 "dns_address":"8.8.8.8"
 },
 "isp":{
 "country_city":"Rome",
 "address":"62.23.136.134",
 "host_name":"acces.134.136.23.62.rev.coltfrance.com",
 "longitude":"12.4833",
 "latitude":"41.899999999999999",
 "timezone":"Europe\/Rome",
 "organization":"COLT Technology Services Group Limited",
 "country_name":"Italy",
 "country_code":"IT",
 "continent_code":"EU"
 },
 "page_current":"1",
 "page_total":"3",
 "page_is_first":"true",
 "page_is_last":"false",
 "nodes":[...]
 }
 }
}

NEXT PAGE

{
 "type":"discovery",
 "statusCode":0,
 "status":"OK",
 "result":{
 "round":"1",
 "state":"completed",
 "progress":100,
 "discoverydata":{
 "page_current":"2",
 "page_total":"3",
 "page_is_first":"false",
 "page_is_last":"false",
 "nodes":[
 {
 "mac_addresses":"70:5A:0F:90:F9:78",
 "address_list":[
 "192.168.14.97"
],
 "state":"up",

PA
GE
*

FingKit – Find and Recognize devices, on any network

 "best_name":"HP705A0F90F977",
 "best_type":"PRINTER",
 "best_make":"HP",
 "best_model":"Officejet Pro 6830",
 "is_family": false,
 "recog_rank":"45",
 "mac_vendor":"HP"
 },

 {
 "mac_addresses":"BC:83:85:DA:A1:C3",
 "address_list":[
 "192.168.13.213"
],
 "state":"up",
 "best_type":"TABLET",
 "best_make":"Microsoft",
 "best_model":"Surface",
 "recog_rank":"40",
 "mac_vendor":"Microsoft"
 }
]
 }
 }
}

LAST PAGE

{
 "type":"discovery",
 "statusCode":0,
 "status":"OK",
 "result":{
 "round":"1",
 "state":"completed",
 "progress":100,
 "discoverydata":{
 "page_current":"3",
 "page_total":"3",
 "page_is_first":"false",
 "page_is_last":"true",
 "nodes":[
 {
 "mac_addresses":"C8:14:51:58:40:58",
 "address_list":[
 "192.168.13.215"
],
 "state":"up",
 "best_type":"MOBILE",

PA
GE
*

FingKit – Find and Recognize devices, on any network

 "best_make":"Huawei",
 "best_model":"P10",
 "best_os":"Android",
 "recog_rank":"95",
 "mac_vendor":"Huawei"
 },

 {
 "mac_addresses":"DC:41:5F:E6:51:60",
 "address_list":[
 "192.168.14.53"
],
 "state":"up",
 "best_type":"MOBILE",
 "best_make":"Apple",
 "best_model":"iPhone",
 "best_os":"iOS",
 "recog_rank":"90",
 "mac_vendor":"Apple"
 }
]
 }
 }
 }

PA
GE
*

FingKit – Find and Recognize devices, on any network

Appendix 1 - Fing Categorization - Groups and Types

For each device, Fing will analyze all the details and provide the best match among its supported types
and categories. The list is reviewed and grows constantly as our Machine Learning system evolves.

Group Device types
Mobile Generic, Mobile, Tablet, MP3 Player, eBook Reader, Smart Watch,

Wearable, Car
Audio & Video Media Player, Television, Game Console, Streaming Dongle,

Speaker/Amp, AV Receiver, Cable Box, Disc Player, Satellite, Audio
Player, Remote Control, Radio, Photo Camera, Photo Display, Mic,
Projector

Home & Office Computer, Laptop, Desktop, Printer, Fax, IP Phone, Scanner, Point of
Sale, Clock, Barcode Scanner

Home Automation IP Camera, Smart Device, Smart Plug, Light, Voice Control, Thermostat,
Power System, Solar Panel, Smart Meter, HVAC, Smart Appliance, Smart
Washer, Smart Fridge, Smart Cleaner, Sleep Tech, Garage Door,
Sprinkler, Electric, Doorbell, Smart Lock, Touch Panel, Controller, Scale,
Toy, Robot, Weather Station, Health Monitor, Baby Monitor, Pet Monitor,
Alarm, Motion Detector, Smoke Detector, Water Sensor, Sensor,
Fingbox, Domotz Box

Network Router, Wi-Fi, Wi-Fi Extender, NAS, Modem, Switch, Gateway, Firewall,
VPN, PoE Switch, USB, Small Cell, Cloud, UPS, Network Appliance

Server Virtual Machine, Server, Terminal, Mail Server, File Server, Proxy Server,
Web Server, Domain Server, Communication, Database

Engineering Raspberry, Arduino, Processing, Circuit Board, RFID Tag

PA
GE
*

FingKit – Find and Recognize devices, on any network

